:: 13/maio/2025 . 14:45
Vereador Maurício Galvão cobra providências da Prefeitura sobre situação crítica na Avenida Uberlândia, em Ilhéus

O vereador Maurício Galvão (PSB) voltou a cobrar da Prefeitura de Ilhéus providências urgentes para resolver a situação crítica da Avenida Uberlândia, localizada nas proximidades da Rua do Cacau, no bairro do Malhado. A via enfrenta problemas graves de infraestrutura, em especial na rede pluvial, o que tem causado transtornos frequentes à população, principalmente em períodos de chuva.
O parlamentar já havia protocolado o Requerimento nº 127/2025, há mais de 2 meses, solicitando esclarecimentos sobre a reforma e manutenção da rede pluvial da avenida, mas até o momento nenhuma obra foi iniciada pela gestão municipal e nenhum esclarecimento foi dado. “Os alagamentos constantes afetam diretamente a vida dos moradores e comerciantes da região, além de comprometer a mobilidade e gerar riscos à saúde pública”, alerta o vereador.

Maurício Galvão destaca que a obstrução das galerias e o desgaste do sistema de escoamento estão provocando buracos, erosão do asfalto e acúmulo de água parada, o que favorece a proliferação de doenças como a dengue. “Não podemos aceitar o descaso com uma demanda tão urgente. A comunidade merece respeito e uma resposta rápida do poder público”, completou.
Estado da Bahia é condenado por poluir o Rio Cachoeira

Numa decisão inédita na Bahia, o juiz da 2ª Vara da Fazenda Pública de Itabuna, Júlio Gonçalves da Silva Júnior, deu sentença favorável, responsabilizando por danos coletivos: o Município de Itabuna, o Governo da Bahia e a Companhia de Engenharia Rural, Hídrica e de Saneamento da Bahia. O caso trata do manejo das baronesas, que se acumulam nos pilares das pontes itabunenses e, quando são empurradas por máquinas, terminam descendo o rio e poluindo as praias ilheenses.
A Ação Civil Pública do Preserva Ilhéus, através de seus entes, o Instituto Nossa Ilhéus e do Grupo de Amigos da Praia, iniciada em 2022 pelos advogados Bruno Duarte, Silvana Lins, Maria Lívia Carvalho, que atuaram pro bono nesta causa, sob a liderança de Jurema Cintra e Marta Serafim, advogadas do Preserva Ilhéus, comprovou os danos ambientais e a incapacidade dos réus em manejar as baronesas. Essas plantas são um problema mundial e afetam a região Grapiúna há anos. Assim, o juiz proibiu que o Município de Itabuna empurre as macrófitas rio abaixo, ordenou que em 90 dias elabore um Plano Municipal de Manejo de Macrófitas Aquáticas, faça um manejo emergencial, separando as baronesas, os resíduos sólidos inorgânicos e dê a destinação adequada para a Cooperativa de Reciclagem de Itabuna. A CERB tem o mesmo prazo para elaboração do Plano de Manejo de Flora Aquática na Barragem do Rio Colônia, para fazer a imediata contenção e remoção das macrófitas já existentes na barragem e divulgação semestral de relatório sobre o material removido da barragem e sua destinação. O Estado da Bahia tem 180 dias para implementar as ações previstas no Plano Estratégico de Revitalização da Bacia do Rio Cachoeira, exercer efetivamente seu poder de polícia ambiental, fiscalizando o lançamento de efluentes no rio, prestar apoio técnico e financeiro aos municípios da Bacia do Rio Cachoeira para implementação de sistemas adequados de tratamento de esgotos e gestão de resíduos sólidos.

Os três réus têm 120 dias, para elaboração de Plano Integrado de Gestão de Macrófitas Aquáticas da Bacia Hidrográfica do Rio Cachoeira, contemplando ações coordenadas de prevenção, controle e manejo, e estão condenados ao pagamento de indenização por danos morais coletivos no valor de R$ 300.000,00 para projetos de recuperação ambiental da Bacia Hidrográfica do Rio Cachoeira. Também foram estabelecidas multas diárias pela não execução das medidas.
Ainda cabe recurso, mas o Coletivo está otimista, pois a OAB de Itabuna vai se unir ao grupo nesta Ação Civil Pública e outras instituições podem fazer o mesmo.
Vom Schutzraum zum Tatort: Wenn Kreise der Gemeinschaft schaden
Während der schützende Kreis seit jeher als Symbol der Sicherheit und des Vertrauens gilt, zeigt die Realität oft ein anderes Bild. Was geschieht, wenn die gleiche Geometrie, die ursprünglich Schutz bieten sollte, zur Bedrohung wird? Dieser Frage gehen wir nach, indem wir die dunkle Seite vertrauter Gemeinschaften beleuchten und zeigen, wie aus Sicherheit Gefahr entstehen kann.
Inhaltsverzeichnis
1. Die Schattenseite des Kreises: Wenn Geborgenheit in Bedrohung umschlägt
Das psychologische Phänomen der Gruppenpolarisierung
Die menschliche Tendenz, in homogenen Gruppen extremer zu werden, ist wissenschaftlich gut belegt. Studien des Max-Planck-Instituts für Bildungsforschung zeigen, dass geschlossene Kreise innerhalb von nur wenigen Wochen radikalere Positionen entwickeln als ihre einzelnen Mitglieder zuvor vertraten. Dieser Effekt verstärkt sich, wenn der Kreis nach außen abgeschottet ist.
Vom Schutzraum zur ausgrenzenden Blase
Was als sicherer Raum begann, kann sich in eine undurchdringliche Blase verwandeln. Die anfängliche Geborgenheit wird zur Bedrohung, wenn Kritik von außen pauschal abgewertet wird und interne Widersprüche nicht mehr zugelassen werden. Die ursprünglich positive Geometrie des Vertrauens verkehrt sich in ihr Gegenteil.
Beispiele aus dem deutschen Vereinswesen
Der deutsche Traditionsverein “Eintracht Musterstadt” entwickelte sich von einer integrativen Gemeinschaft zu einem ausgrenzenden Zirkel. Neue Mitglieder wurden nur noch nach politischer Gesinnung ausgewählt, kritische Stimmen systematisch ausgegrenzt. Innerhalb von drei Jahren verlor der Verein 40% seiner heterogenen Mitglieder – ein klassischer Fall von gruppeninduzierter Intoleranz.
2. Die Anatomie des toxischen Kreises: Warnsignale erkennen
| Warnsignal | Beschreibung | Folgen |
|---|---|---|
| Übermäßige Abschottung | Kontakte nach außen werden als Bedrohung dargestellt | Verlust der Realitätskontrolle |
| Konformitätsdruck | Abweichende Meinungen werden sanktioniert | Kreativitätsverlust und Gruppendenken |
| Fehlende Kontrollen | Keine internen Korrekturmechanismen | Machtanhäufung bei Einzelnen |
Druck zur Konformität und Meinungsgleichheit
In toxischen Kreisen entwickelt sich oft ein ungeschriebenes Gesetz der Meinungshomogenität. Abweichungen werden nicht als Bereicherung, sondern als Verrat betrachtet. Dieser Druck zeigt sich in subtilen Formen:
- Sprachliche Anpassung an Gruppenjargon
- Vermeidung kontroverser Themen
- Soziale Kälte gegenüber “Abweichlern”
3. Historische Fallbeispiele: Wenn Kreise in Deutschland scheiterten
Vom Wandervogel zur ideologischen Verblendung
Die Wandervogel-Bewegung begann als friedliche Jugendbewegung, die Naturverbundenheit und Freiheit propagierte. Doch der ursprünglich offene Kreis verhärtete sich zunehmend. Durch Abschottung und ideologische Vereinnahmung entwickelten sich Teile der Bewegung zu Vorläufern nationalistischer Strömungen.
“Die gefährlichsten Kreise sind jene, die ihre eigene Geschlossenheit für eine Tugend halten.”
Wirtschaftliche Netzwerke und ihre Abgründe
Der Fall “Wirecard” zeigt exemplarisch, wie ein geschlossenes Führungsnetzwerk durch mangelnde externe Kontrollen kriminelle Strukturen entwickeln kann. Der Vorstand agierte wie ein abgeschotteter Zirkel, der Kritiker systematisch ausschloss und interne Warnsignale ignorierte.
4. Der digitale Wandel: Soziale Medien als Katalysator
Algorithmen verstärken Echokammern
Digitale Plattformen beschleunigen die Bildung toxischer Kreise durch personalisierte Algorithmen. Eine Studie der Universität Leipzig belegt, dass deutsche Facebook-Nutzer in politisch homogenen Gruppen innerhalb von sechs Monaten signifikant radikalere Ansichten entwickelten.
Deutsche Besonderheiten im digitalen Raum
Im deutschsprachigen Raum zeigen sich spezifische Muster der digitalen Kreisbildung:
- Regional begrenzte WhatsApp-Gruppen mit hohem Konformitätsdruck
- Fachforen, die zu ideologischen Zirkeln werden
- Vereinskommunikation, die digitale Abschottung verstärkt
5. Die Dynamik des Missbrauchs: Machtstrukturen in geschlossenen Systemen
Wie Vertrauen ausgenutzt wird
Das fundamentale Vertrauen, das die ursprüngliche Schutzfunktion von Kreisen ausmacht, wird in toxischen Systemen systematisch missbraucht. Führungspersonen instrumentalisieren die emotionale Bindung der Mitglieder, um kritiklose Gefolgschaft zu erzwingen.
Die Rolle charismatischer Führungspersönlichkeiten
Charismatische Führer nutzen oft bewusst die psychologischen Mechanismen geschlossener Kreise. Durch geschickte Rhetorik und emotionale Manipulation schaffen sie Abhängigkeiten, die rationale Kritik unmöglich machen.
6. Prävention und Heilung: Den Kreis retten ohne ihn zu zerstören
Frühwarnsysteme etablieren
Gesunde Kreise implementieren bewusst Mechanismen zur Selbstevaluation:
Understanding Probabilities and Risks Through Everyday Examples
In our daily lives, we constantly encounter situations involving uncertainty, from weather forecasts to financial investments. Grasping the concepts of probability and risk helps us make informed decisions and better understand the world around us. This article explores fundamental ideas in probabilistic theory, illustrating them with practical examples—highlighting how abstract mathematical principles underpin everyday experiences, including modern decision-making scenarios like the popular game Chicken Crash demo available.
Table of Contents
- Introduction to Probabilities and Risks
- Fundamental Concepts of Probabilistic Theory
- Exploring Variability and Fluctuations in Random Processes
- Non-Linear Dynamics and the Emergence of Chaos
- Connecting Mathematical Concepts to Everyday Risks
- «Chicken Crash»: A Modern Illustration of Probabilistic Risks
- Jensen’s Inequality and Its Practical Implications
- From Theory to Practice: Making Better Decisions with Probabilistic Thinking
- Deepening Understanding: Non-Obvious Connections and Advanced Insights
- Conclusion: Embracing Uncertainty and Enhancing Risk Literacy
Introduction to Probabilities and Risks: Understanding Their Role in Everyday Life
Defining probability and risk: basic concepts and importance
Probability quantifies the likelihood of an event occurring, expressed as a number between 0 (impossibility) and 1 (certainty). Risk refers to the potential of an adverse outcome, often associated with uncertainty. For example, the probability of rain tomorrow might be 0.3, indicating a 30% chance, which informs whether you carry an umbrella. Recognizing these concepts helps us evaluate options and anticipate outcomes more rationally.
Why understanding probabilities matters for making informed decisions
Informed decision-making hinges on accurately assessing risks and probabilities. Misjudging the likelihood of events can lead to costly mistakes—such as over-insuring against unlikely risks or ignoring probable hazards. For instance, understanding the probability of stock market downturns can influence investment choices, reducing potential losses and optimizing returns. Probabilistic literacy enables individuals to weigh options objectively rather than relying on intuition or bias.
Overview of how probabilistic thinking is embedded in daily experiences
From choosing insurance plans to planning travel schedules, probabilistic thinking underpins many decisions. For example, a person might decide to leave earlier due to a forecast predicting a 40% chance of traffic congestion. Recognizing patterns—like seasonal flu prevalence or election polling—relies on interpreting statistical data, demonstrating that probability is woven into our understanding of everyday life.
Fundamental Concepts of Probabilistic Theory
Random variables and probability distributions: the building blocks
A random variable assigns numerical outcomes to uncertain events—e.g., the number of heads in ten coin flips. The probability distribution describes the likelihood of each possible outcome, serving as the foundation for modeling uncertainty. These tools enable us to analyze complex systems, from predicting weather patterns to evaluating financial risks.
Law of large numbers: predicting averages over time
This principle states that as the number of independent trials increases, the average result converges to the expected value. For example, flipping a fair coin repeatedly will produce heads approximately 50% of the time over many flips. This law underpins statistical inference, allowing us to make reliable predictions based on large datasets.
Central limit theorem: why sums of random variables tend to normal distribution
Irrespective of the original distribution, the sum of many independent random variables tends toward a normal distribution. This explains why phenomena like measurement errors or test scores often follow a bell curve, facilitating the use of statistical tools across diverse fields.
Exploring Variability and Fluctuations in Random Processes
The law of the iterated logarithm: bounding the fluctuations of random sums
While averages stabilize over time, the law of the iterated logarithm describes the magnitude of fluctuations in partial sums of random variables. It indicates that, with high probability, these fluctuations stay within specific bounds, providing a nuanced understanding of variability beyond the law of large numbers.
Practical implications: understanding the limits of predictability
Knowing the bounds of fluctuations helps assess the likelihood of extreme deviations, such as stock market crashes or sudden weather shifts. This understanding is vital for risk management, emphasizing that while averages are predictable, individual outcomes can still vary significantly.
Examples outside mathematics: stock market, weather forecasts
In finance, traders recognize that while long-term trends are predictable, short-term market movements are highly variable. Similarly, weather forecasts become less reliable beyond a few days, illustrating the inherent unpredictability in complex systems influenced by probabilistic fluctuations.
Non-Linear Dynamics and the Emergence of Chaos
Introducing bifurcation theory and the logistic map
Non-linear systems can exhibit bifurcations, where small changes in parameters lead to sudden qualitative shifts, such as transitioning from stable to chaotic behavior. The logistic map is a simple mathematical model demonstrating how populations can fluctuate unpredictably due to non-linear feedback, illustrating the potential for complex behavior emerging from simple rules.
Period-doubling route to chaos: how simple systems become unpredictable
Repeated bifurcations result in period-doubling cascades, where oscillations double in period until chaos ensues. This process, observed in fluid dynamics and electrical circuits, shows that deterministic rules can produce behavior seemingly random, challenging our assumptions about predictability.
Feigenbaum constant and its significance in real-world systems
The Feigenbaum constant quantifies the geometric rate at which period-doubling bifurcations occur, revealing a universal pattern in non-linear systems. Recognizing such patterns helps scientists anticipate critical transitions in climate systems, ecosystems, and financial markets.
Connecting Mathematical Concepts to Everyday Risks
How probabilistic models inform risk assessment in finance, health, and safety
Models based on probability enable us to evaluate risks, such as the chance of disease outbreaks or financial losses. For example, insurance companies use probabilistic data to set premiums, balancing risk and profitability. Understanding these models improves individual and institutional decision-making under uncertainty.
The role of non-linear dynamics in complex systems and unforeseen events
Complex systems—like ecosystems or economies—are sensitive to initial conditions, where small changes can lead to disproportionate effects, known as butterfly effects. Recognizing this helps us appreciate the limits of predictability and prepare for rare but impactful events.
Case study: the “Chicken Crash” — modeling decision risks in modern contexts
The game Chicken Crash demo available exemplifies how probabilistic reasoning applies to real-world risk assessment. Players must decide when to stop, balancing potential gains against the risk of losing everything. This simple game encapsulates principles of risk management and illustrates how understanding probabilities influences our choices.
«Chicken Crash»: A Modern Illustration of Probabilistic Risks
Scenario description: what is “Chicken Crash” and why is it relevant?
“Chicken Crash” is an online game where players press a button repeatedly, trying to cash out before a virtual chicken crashes. The longer they wait, the higher the potential reward, but the risk of losing everything grows exponentially. This scenario models decision-making under uncertainty, reflecting real-life situations like investment timing or safety protocols.
Applying probabilistic reasoning to predict outcomes in the game
Players estimate the probability of crash at each step, using game patterns and previous outcomes. Understanding the underlying distribution and potential for sudden failure—akin to tail risk in finance—helps optimize strategies. The game exemplifies how even simple probabilities can lead to complex decision landscapes.
Learning from the game: risk management and decision-making under uncertainty
Participants learn the importance of balancing risk and reward, recognizing that overconfidence can lead to losses. This mirrors real-world scenarios where patience and probabilistic insight improve outcomes, emphasizing the value of developing risk literacy.
Jensen’s Inequality and Its Practical Implications
Explaining Jensen’s inequality with relatable examples
Jensen’s inequality states that for a convex function f, the function of the expected value exceeds or equals the expected value of the function:
f(E[X]) ≤ E[f(X)]. For example, the average of a set of numbers raised to a power (a convex function) will be less than or equal to the power of the average. This concept explains why diversifying investments can reduce risk.
Convex functions and their role in risk assessment
Convex functions describe scenarios where combining risks yields a higher expected loss—important in insurance and finance. Recognizing convexity helps in designing strategies that minimize potential losses, such as spreading investments or diversifying assets.
Case study: financial investments and expected returns
Suppose an investor considers two options: a guaranteed return of 5% or a 50/50 chance of 0% or 10%. Applying Jensen’s inequality reveals that the expected return of the risky option might be less favorable when considering risk aversion, guiding more prudent investment choices.
From Theory to Practice: Making Better Decisions with Probabilistic Thinking
Strategies for interpreting probabilistic information
- Question the data: Consider the source and methodology behind probability estimates.
- Beware of biases: Avoid overconfidence or underestimating rare events.
- Use visual tools: Charts and probabilistic models can clarify complex information.
Avoiding common pitfalls: misconceptions about randomness and risk
Many people fall prey to gambler’s fallacy—believing past outcomes influence future events—despite independence in many processes. Recognizing such misconceptions helps prevent faulty decisions, such as overestimating the likelihood of a “hot streak” in gambling or investing.
Tools and techniques for risk evaluation in everyday life
Practical methods include probability trees, Monte Carlo simulations, and decision analysis frameworks. These tools aid in quantifying uncertainties and comparing options, empowering individuals to navigate risks more confidently.
Deepening Understanding: Non-Obvious Connections and Advanced Insights
How chaos theory influences our perception of predictability
Chaos theory reveals that even deterministic systems can exhibit unpredictable behavior, especially sensitive to initial conditions. This understanding emphasizes that some risks are inherently unpredictable, challenging the notion of absolute certainty in forecasts.
The importance of understanding the limits of probabilistic models
While models are invaluable, they simplify reality and may omit rare but impactful events—so-called “black swans.” Recognizing these limitations encourages cautious interpretation and preparation for unforeseen risks.
Future directions: probabilistic models in artificial intelligence and machine learning
Advancements in AI increasingly rely on probabilistic algorithms to handle uncertainty, from predictive analytics to autonomous systems. Developing probabilistic literacy becomes essential as these technologies become integral to decision-making processes across sectors.
Conclusion: Embracing Uncertainty and Enhancing Risk Literacy
- 1









